Bone Morphology in 46 BXD Recombinant Inbred Strains and Femur-Tibia Correlation
نویسندگان
چکیده
We examined the bone properties of BXD recombinant inbred (RI) mice by analyzing femur and tibia and compared their phenotypes of different compartments. 46 BXD RI mouse strains were analyzed including progenitor C57BL/6J (n = 16) and DBA/2J (n = 15) and two first filial generations (D2B6F1 and B6D2F1). Strain differences were observed in bone quality and structural properties (P < 0.05) in each bone profile (whole bone, cortical bone, or trabecular bone). It is well known that skeletal phenotypes are largely affected by genetic determinants and genders, such as bone mineral density (BMD). While genetics and gender appear expectedly as the major determinants of bone mass and structure, significant correlations were also observed between femur and tibia. More importantly, positive and negative femur-tibia associations indicated that genetic makeup had an influence on skeletal integrity. We conclude that (a) femur-tibia association in bone morphological properties significantly varies from strain to strain, which may be caused by genetic differences among strains, and (b) strainwise variations were seen in bone mass, bone morphology, and bone microarchitecture along with bone structural property.
منابع مشابه
Trps1 Differentially Modulates the Bone Mineral Density between Male and Female Mice and Its Polymorphism Associates with BMD Differently between Women and Men
The objective of our study was to identify genetic factors that regulate bone mineral density (BMD) in mice using well defined recombinant inbred strains. For this purpose we chose the BXD recombinant inbred (RI) strains derived from progeny of the C57BL/6J (B6) and DBA/2J (D2) progenitor strains. We sampled both male and female mice (∼4 each) of 46 strains at 3 months-of-age, measured their BM...
متن کاملGenetic regulation of bone mineral density in mice.
Peak bone mass is a major determinant of risk of osteoporotic fracture. Family and twin studies have found a strong genetic component to the determination of bone mineral density (BMD). However, BMD is a complex trait whose expression is confounded by environmental influences and polygenic inheritance. The number, locations and effects of the individual genes contributing to natural variation i...
متن کاملSingle locus (rol) control of extreme resistance to red cell osmotic lysis: intrinsic mode of gene action.
Previous work has indicated that inbred mouse strains C57BL/6 and DBA/2 produce red cells differing in their sensitivity to osmotic lysis and that the trait is under multigene control. A recombinant inbred strain (BXD-31), produced from C57BL/6 and DBA/2, has red cells manifesting resistance to osmotic lysis far greater than that of either progenitor. We demonstrate here that the fragility diff...
متن کاملIndependent quantitative trait loci influence ventral and dorsal hippocampal volume in recombinant inbred strains of mice.
Anatomical and functional studies support segregation of the hippocampus into ventral and dorsal components along its septotemporal axis. However, it is unknown whether the development of these two components of the hippocampus is influenced by common or separate genetic factors. In this study, we used recombinant inbred strains of mice to determine whether the same or different quantitative tr...
متن کاملGenetic control of the mouse cerebellum: identification of quantitative trait loci modulating size and architecture.
To discover genes influencing cerebellum development, we conducted a complex trait analysis of variation in the size of the adult mouse cerebellum. We analyzed two sets of recombinant inbred BXD strains and an F2 intercross of the common inbred strains, C57BL/6J and DBA/2J. We measured cerebellar size as the weight or volume of fixed or histologically processed tissue. Among BXD recombinant inb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015